
Lecture 6:Lecture 6:
Semaphores and MonitorsSemaphores and Monitors

CSE 120: Principles of Operating Systems
Alex C. Snoeren

HW 2 Due Tuesday 10/18

CSE 120 – Lecture 62

Higher-Level SynchronizationHigher-Level Synchronization
 We looked at using locks to provide mutual exclusion
 Locks work, but they have some drawbacks when

critical sections are long
◆ Spinlocks – inefficient
◆ Disabling interrupts – can miss or delay important events

 Instead, we want synchronization mechanisms that
◆ Block waiters
◆ Leave interrupts enabled inside the critical section

 Look at two common high-level mechanisms
◆ Semaphores: binary (mutex) and counting
◆ Monitors: mutexes and condition variables

 Use them to solve common synchronization problems

CSE 120 – Lecture 63

SemaphoresSemaphores
 Semaphores are another data structure that provides

mutual exclusion to critical sections
◆ Block waiters, interrupts enabled within CS
◆ Described by Dijkstra in THE system in 1968

 Semaphores can also be used as atomic counters
◆ More later

 Semaphores support two operations:
◆ wait(semaphore): decrement, block until semaphore is open

» Also P(), after the Dutch word for test, or down()
◆ signal(semaphore): increment, allow another thread to enter

» Also V() after the Dutch word for increment, or up()

CSE 120 – Lecture 64

Blocking in SemaphoresBlocking in Semaphores
 Associated with each semaphore is a queue of waiting

processes
 When wait() is called by a thread:

◆ If semaphore is open, thread continues
◆ If semaphore is closed, thread blocks on queue

 Then signal() opens the semaphore:
◆ If a thread is waiting on the queue, the thread is unblocked
◆ If no threads are waiting on the queue, the signal is

remembered for the next thread
» In other words, signal() has “history” (c.f. condition vars later)
» This “history” is a counter

CSE 120 – Lecture 65

Semaphore TypesSemaphore Types
 Semaphores come in two types
 Mutex semaphore

◆ Represents single access to a resource
◆ Guarantees mutual exclusion to a critical section

 Counting semaphore
◆ Represents a resource with many units available, or a

resource that allows certain kinds of unsynchronized
concurrent access (e.g., reading)

◆ Multiple threads can pass the semaphore
◆ Number of threads determined by the semaphore “count”

» mutex has count = 1, counting has count = N

CSE 120 – Lecture 66

Using SemaphoresUsing Semaphores
 Use is similar to our locks, but semantics are different

struct Semaphore {
 int value;
 Queue q;
} S;
withdraw (account, amount) {
 wait(S);
 balance = get_balance(account);
 balance = balance – amount;
 put_balance(account, balance);
 signal(S);
 return balance;
}

wait(S);
balance = get_balance(account);
balance = balance – amount;

wait(S);

put_balance(account, balance);
signal(S);

wait(S);

…
signal(S);

…
signal(S);

Threads
block

It is undefined which
thread runs after a signal

CSE 120 – Lecture 67

Semaphores in NachosSemaphores in Nachos

 thread_sleep() assumes interrupts are disabled
◆ Note that interrupts are disabled only to enter/leave critical section
◆ How can it sleep with interrupts disabled?

 Need to be able to reference current thread

wait (S) {
 Disable interrupts;
 while (S->value == 0) {
 enqueue(S->q, current_thread);
 thread_sleep(current_thread);
 }
 S->value = S->value – 1;
 Enable interrupts;
}

signal (S) {
 Disable interrupts;
 thread = dequeue(S->q);
 thread_start(thread);
 S->value = S->value + 1;
 Enable interrupts;
}

CSE 120 – Lecture 68

Using SemaphoresUsing Semaphores
 We’ve looked at a simple example for using

synchronization
◆ Mutual exclusion while accessing a bank account

 Now we’re going to use semaphores to look at more
interesting examples
◆ Readers/Writers
◆ Bounded Buffers

CSE 120 – Lecture 69

Readers/Writers ProblemReaders/Writers Problem
 Readers/Writers Problem:

◆ An object is shared among several threads
◆ Some threads only read the object, others only write it
◆ We can allow multiple readers
◆ But only one writer

 How can we use semaphores to control access to the
object to implement this protocol?

 Use three variables
◆ int readcount – number of threads reading object
◆ Semaphore mutex – control access to readcount
◆ Semaphore w_or_r – exclusive writing or reading

CSE 120 – Lecture 610

// number of readers
int readcount = 0;
// mutual exclusion to readcount
Semaphore mutex = 1;
// exclusive writer or reader
Semaphore w_or_r = 1;

writer {
 wait(w_or_r); // lock out readers
 Write;
 signal(w_or_r); // up for grabs
}

Readers/WritersReaders/Writers

reader {
 wait(mutex); // lock readcount
 readcount += 1; // one more reader
 if (readcount == 1)
 wait(w_or_r); // synch w/ writers
 signal(mutex); // unlock readcount
 Read;
 wait(mutex); // lock readcount
 readcount -= 1; // one less reader
 if (readcount == 0)
 signal(w_or_r); // up for grabs
 signal(mutex); // unlock readcount}
}

CSE 120 – Lecture 611

Readers/Writers NotesReaders/Writers Notes
 If there is a writer

◆ First reader blocks on w_or_r
◆ All other readers block on mutex

 Once a writer exits, all readers can fall through
◆ Which reader gets to go first?

 The last reader to exit signals a waiting writer
◆ If no writer, then readers can continue

 If readers and writers are waiting on w_or_r, and a
writer exits, who goes first?

 Why doesn’t a writer need to use mutex?

CSE 120 – Lecture 612

Bounded BufferBounded Buffer
 Problem: There is a set of resource buffers shared by

producer and consumer threads
 Producer inserts resources into the buffer set

◆ Output, disk blocks, memory pages, processes, etc.

 Consumer removes resources from the buffer set
◆ Whatever is generated by the producer

 Producer and consumer execute at different rates
◆ No serialization of one behind the other
◆ Tasks are independent (easier to think about)
◆ The buffer set allows each to run without explicit handoff

CSE 120 – Lecture 613

Bounded Buffer (2)Bounded Buffer (2)
 Use three semaphores:

◆ mutex – mutual exclusion to shared set of buffers
» Binary semaphore

◆ empty – count of empty buffers
» Counting semaphore

◆ full – count of full buffers
» Counting semaphore

CSE 120 – Lecture 614

producer {
 while (1) {
 Produce new resource;
 wait(empty); // wait for empty buffer
 wait(mutex); // lock buffer list
 Add resource to an empty buffer;
 signal(mutex); // unlock buffer list
 signal(full); // note a full buffer
 }
}

Bounded Buffer (3)Bounded Buffer (3)

consumer {
 while (1) {
 wait(full); // wait for a full buffer
 wait(mutex); // lock buffer list
 Remove resource from a full buffer;
 signal(mutex); // unlock buffer list
 signal(empty); // note an empty buffer
 Consume resource;
 }
}

Semaphore mutex = 1; // mutual exclusion to shared set of buffers
Semaphore empty = N; // count of empty buffers (all empty to start)
Semaphore full = 0; // count of full buffers (none full to start)

CSE 120 – Lecture 615

Bounded Buffer (4)Bounded Buffer (4)
 Why need the mutex at all?
 Where are the critical sections?
 What happens if operations on mutex and full/empty

are switched around?
◆ The pattern of signal/wait on full/empty is a common construct

often called an interlock

 Producer-Consumer and Bounded Buffer are classic
examples of synchronization problems
◆ The Mating Whale problem in Project 1 is another
◆ You can use semaphores to solve the problem
◆ Use readers/writers and bounded buffer as examples for hw

CSE 120 – Lecture 616

Semaphore SummarySemaphore Summary
 Semaphores can be used to solve any of the

traditional synchronization problems
 However, they have some drawbacks

◆ They are essentially shared global variables
» Can potentially be accessed anywhere in program

◆ No connection between the semaphore and the data being
controlled by the semaphore

◆ Used both for critical sections (mutual exclusion) and
coordination (scheduling)

◆ No control or guarantee of proper usage

 Sometimes hard to use and prone to bugs
◆ Another approach: Use programming language support

CSE 120 – Lecture 617

MonitorsMonitors
 A monitor is a programming language construct that

controls access to shared data
◆ Synchronization code added by compiler, enforced at runtime
◆ Why is this an advantage?

 A monitor is a module that encapsulates
◆ Shared data structures
◆ Procedures that operate on the shared data structures
◆ Synchronization between concurrent procedure invocations

 A monitor protects its data from unstructured access
 It guarantees that threads accessing its data through

its procedures interact only in legitimate ways

CSE 120 – Lecture 618

Monitor SemanticsMonitor Semantics
 A monitor guarantees mutual exclusion

◆ Only one thread can execute any monitor procedure at any
time (the thread is “in the monitor”)

◆ If a second thread invokes a monitor procedure when a first
thread is already executing one, it blocks

» So the monitor has to have a wait queue…
◆ If a thread within a monitor blocks, another one can enter

 What are the implications in terms of parallelism in
monitor?

CSE 120 – Lecture 619

Account ExampleAccount Example

◆ Hey, that was easy
◆ But what if a thread wants to wait inside the monitor?

» Such as “mutex(empty)” by reader in bounded buffer?

Monitor account {
 double balance;

 double withdraw(amount) {
 balance = balance – amount;
 return balance;
 }
}

withdraw(amount)
 balance = balance – amount;

withdraw(amount)

 return balance (and exit)

withdraw(amount)

 balance = balance – amount
 return balance;

 balance = balance – amount;
 return balance;

Threads
block

waiting
to get
into

monitor

When first thread exits, another can
enter. Which one is undefined.

CSE 120 – Lecture 620

Condition VariablesCondition Variables
 Condition variables provide a mechanism to wait for

events (a “rendezvous point”)
◆ Resource available, no more writers, etc.

 Condition variables support three operations:
◆ Wait – release monitor lock, wait for C/V to be signaled

» So condition variables have wait queues, too
◆ Signal – wakeup one waiting thread
◆ Broadcast – wakeup all waiting threads

 Note: Condition variables are not boolean objects
◆ “if (condition_variable) then” … does not make sense
◆ “if (num_resources == 0) then wait(resources_available)”

does
◆ An example will make this more clear

CSE 120 – Lecture 621

Monitor Bounded BufferMonitor Bounded Buffer

Monitor bounded_buffer {
 Resource buffer[N];
 // Variables for indexing buffer
 Condition not_full, not_empty;

 void put_resource (Resource R) {
 while (buffer array is full)
 wait(not_full);
 Add R to buffer array;
 signal(not_empty);
 }

 Resource get_resource() {
 while (buffer array is empty)
 wait(not_empty);
 Get resource R from buffer array;
 signal(not_full);
 return R;
 }
} // end monitor

◆ What happens if no threads are waiting when signal is called?

CSE 120 – Lecture 622

Monitor QueuesMonitor Queues
Monitor bounded_buffer {

 Condition not_full;
 …other variables…
 Condition not_empty;

 void put_resource () {
 …wait(not_full)…
 …signal(not_empty)…
 }
 Resource get_resource () {
 …
 }
}

Waiting to enter

Waiting on
condition variables

Executing inside
the monitor

CSE 120 – Lecture 623

Condition Condition Vars Vars != Semaphores!= Semaphores
 Condition variables != semaphores

◆ Although their operations have the same names, they have
entirely different semantics (such is life, worse yet to come)

◆ However, they each can be used to implement the other

 Access to the monitor is controlled by a lock
◆ wait() blocks the calling thread, and gives up the lock

» To call wait, the thread has to be in the monitor (hence has lock)
» Semaphore::wait just blocks the thread on the queue

◆ signal() causes a waiting thread to wake up
» If there is no waiting thread, the signal is lost
» Semaphore::signal increases the semaphore count, allowing

future entry even if no thread is waiting
» Condition variables have no history

CSE 120 – Lecture 624

Signal SemanticsSignal Semantics
 There are two flavors of monitors that differ in the

scheduling semantics of signal()
◆ Hoare monitors (original)

» signal() immediately switches from the caller to a waiting thread
» The condition that the waiter was anticipating is guaranteed to

hold when waiter executes
» Signaler must restore monitor invariants before signaling

◆ Mesa monitors (Mesa, Java)
» signal() places a waiter on the ready queue, but signaler

continues inside monitor
» Condition is not necessarily true when waiter runs again

 Returning from wait() is only a hint that something changed
 Must recheck conditional case

CSE 120 – Lecture 625

Hoare vs. Mesa MonitorsHoare vs. Mesa Monitors
 Hoare

if (empty)
wait(condition);

 Mesa
while (empty)

wait(condition);

 Tradeoffs
◆ Mesa monitors easier to use, more efficient

» Fewer context switches, easy to support broadcast
◆ Hoare monitors leave less to chance

» Easier to reason about the program

CSE 120 – Lecture 626

Condition Condition Vars Vars & Locks& Locks
 Condition variables are also used without monitors in

conjunction with blocking locks
◆ This is what you are implementing in Project 1

 A monitor is “just like” a module whose state includes
a condition variable and a lock
◆ Difference is syntactic; with monitors, compiler adds the code

 It is “just as if” each procedure in the module calls
acquire() on entry and release() on exit
◆ But can be done anywhere in procedure, at finer granularity

 With condition variables, the module methods may
wait and signal on independent conditions

CSE 120 – Lecture 627

Using Using Cond Vars Cond Vars & Locks& Locks
 Alternation of two threads (ping-pong)
 Each executes the following:
Lock lock;
Condition cond;

void ping_pong () {
 acquire(lock);
 while (1) {
 printf(“ping or pong\n”);
 signal(cond, lock);
 wait(cond, lock);
 }
 release(lock);
}

Must acquire lock before you can
wait (similar to needing interrupts
disabled to call Sleep in Nachos)

Wait atomically releases lock
and blocks until signal()

Wait atomically acquires lock
before it returns

CSE 120 – Lecture 628

Monitors and JavaMonitors and Java
 A lock and condition variable are in every Java object

◆ No explicit classes for locks or condition variables

 Every object is/has a monitor
◆ At most one thread can be inside an object’s monitor
◆ A thread enters an object’s monitor by

» Executing a method declared “synchronized”
 Can mix synchronized/unsynchronized methods in same class

» Executing the body of a “synchronized” statement
 Supports finer-grained locking than an entire procedure
 Identical to the Modula-2 “LOCK (m) DO” construct

 Every object can be treated as a condition variable
◆ Object::notify() has similar semantics as Condition::signal()

CSE 120 – Lecture 629

SummarySummary
 Semaphores

◆ wait()/signal() implement blocking mutual exclusion
◆ Also used as atomic counters (counting semaphores)
◆ Can be inconvenient to use

 Monitors
◆ Synchronizes execution within procedures that manipulate

encapsulated data shared among procedures
» Only one thread can execute within a monitor at a time

◆ Relies upon high-level language support
 Condition variables

◆ Used by threads as a synchronization point to wait for events
◆ Inside monitors, or outside with locks

CSE 120 – Lecture 630

Next timeNext time……
 Read Chapters 5 and 7

